FLUX VERSIONS AND ENERGIES

Manuel Buenfil, updated June 27, 2007

FLUXES (USED FOR MOVIES, NOT PARTICLE RELEASE)

NUMBERED FLUX VERSIONS ARE FOR AURORAL CAPS ONLY

Version 2

Read from CAPS file:

n = Density

flux[cm⁻²s⁻¹] =
$$10^9 \left(\frac{n}{10}\right)^{2.2} + 7*10^7$$

Version 3

Read from CAPS file:

n = Density

S120 = Ponyting flux

flux[cm⁻²s⁻¹] =
$$2.8*10^9 \left(\frac{n}{10}\right)^{2.2} + 5.6*(0.245*S120)^{1.26}$$

Version 10

Read from CAPS file:

n = Density

S120 = Ponyting flux

E=Characteristic Energy

$$T = \frac{E \times 10^3}{7.0}$$

 $FLossCone = 0.4(1.0 + 0.8 \sin(2\pi(mlt - 3)/24))$

$$N = n \left(1 - erf\left(\sqrt{\frac{50}{T}}\right) \right) \times FLossCone$$

flux[cm⁻²s⁻¹] =
$$\sqrt{2.8 \times 10^9 N^{2.2} 5.6 \times 10^7 (0.245 * S120)^{1.26}}$$

flux has a max of 3×10^9

Version 12

Read from CAPS file:

n = Density S120 = Ponyting flux

Read from Steve's temperature file:

T=Temperature

 $FLossCone = 0.4(1.0 + 0.8 \sin(2\pi(mlt - 3)/24))$

$$N = n \left(1 - erf\left(\sqrt{\frac{50}{T}}\right) \right) \times FLossCone$$

flux[cm⁻²s⁻¹] =
$$\sqrt{2.8 \times 10^9 N^{2.2} 5.6 \times 10^7 (0.245 * S120)^{1.26}}$$

flux has a max of 3×10^9

FLUX FOR POLAR CAPS RELEASE

SZA=Solar Zenith Angle

If
$$0 < SZA < 90$$

flux[cm⁻²s⁻¹] =
$$2 \times 10^8$$

flux[cm⁻²s⁻¹] =
$$2 \times 10^{4} \left(8 - 25 \times \frac{SZA - 90}{20} \right)$$

If
$$SZA > 110$$

flux[cm⁻²s⁻¹] =
$$2 \times 10^{5.5}$$

THERMAL AND PARALLEL ENERGIES (USED FOR RELEASE, NOT MOVIES)

Read from CAPS file:

n = Density

S120 = Ponyting flux

TEMPERATURE from JOULE HEATING:

Eth(eV) =
$$0.1 + 9.23(S120 \times 0.2452)^{0.35}$$

[S120 in mW/m² at 120km)]

where
$$0.245 = \frac{0.6829}{2.7854}$$

PARALLEL ENERGY from J// and KNIGHT:

$$E//[eV] = Eth + e Phi[V]$$

Phi[V] =
$$1500[V/\mu A/m^2] \times (J//-0.33)^2 [\mu A/m^2]$$
 (0 if J// < 0.33)

[Lyons, 1980, AGU Monograph 25]

For mapping up from 120 km to 1000 km altitude:

$$0.6829 = \left(\frac{6371 + 120}{6371 + 1000}\right)^3$$

For mapping down from 4000 to 1000 km altitude:

$$2.7854 = \left(\frac{6371 + 4000}{6371 + 1000}\right)^3$$